skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matheny, P. Brandon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract PremiseThe agaricomycete order Cantharellales contains approximately 1000 species of fungi characterized by diverse morphological forms, ecological guilds, and nutritional modes. Examples include coralloid lichens that form symbioses with unicellular green algae, bulbil‐forming lichenicolous species, corticioid free‐living fungi that degrade dead sources of organic carbon, pathogens that cause plant disease, orchid root endosymbionts, and ectomycorrhizal fungi including popular edible mushrooms. However, evolutionary relationships in the Cantharellales remain poorly understood due to conflicting estimates based on ribosomal DNA loci. MethodsWe constructed a five‐gene phylogeny of the Cantharellales using data from 301 specimens to evaluate family‐level relationships. We used penalized likelihood to estimate divergence times and ancestral state reconstruction to test the hypothesis of multiple independent origins of biotrophic ecologies in the order and whether those transitions are younger than the divergence times of associated plant or lichen hosts. ResultsFour monophyletic families were recovered with strong support: Botryobasidiaceae, Ceratobasidiaceae, Hydnaceae s.l., and Tulasnellaceae, with Hydnaceae containing the greatest species richness and morphological diversity. Our results suggest the Cantharellales diverged during the Carboniferous period with subsequent diversification following the Permian‐Triassic extinction. Ancestral state reconstruction supports a saprotrophic most recent common ancestor with at least three transitions to an ectomycorrhizal ecology, multiple transitions to a lichenicolous habit with one or more subsequent transitions to mutualistic nutritional modes, four transitions to an orchid mycorrhizal ecology, and two transitions to a lichenized lifestyle. ConclusionsThis study represents the first comprehensive examination of the evolution of form and function across this ecologically and morphologically diverse order of fungi. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available April 3, 2026
  4. Inocybe is the largest genus in the family Inocybaceae, with approximately 1000 species worldwide. Basic data on the species diversity, geographic distribution, and the infrageneric framework of Inocybe are still incomplete because of the intricate nature of this genus, which includes numerous unrecognized taxa that exist around the world. A multigene phylogeny of the I. umbratica–paludinella group, initially designated as the “I. angustifolia subgroup”, was conducted using the ITS-28S-rpb2 nucleotide datasets. The seven species, I. alabamensis, I. angustifolia, I. argenteolutea, I. olivaceonigra, I. paludinella, I. subangustifolia, and I. umbratica, were confirmed as members of this species group. At the genus level, the I. umbratica–paludinella group is a sister to the lineage of the unifying I. castanea and an undescribed species. Inocybe sect. Umbraticae sect. nov. was proposed to accommodate species in the I. umbratica–paludinella group and the I. castanea lineage. This section now comprises eight documented species and nine new species from China, as described in this paper. Additionally, new geographical distributions of I. angustifolia and I. castanea in China are reported. The nine new species and I. angustifolia, I. castanea, I. olivaceonigra, and I. umbratica are described in detail and illustrated herein with color plates based on Chinese materials. A global key to 17 species in the section Umbraticae is provided. The results of the current study provide a more detailed basis for the accurate identification of species in the I. umbratica-paludinella group and a better understanding of their phylogenetic placement. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Four new species of Albomagister, a genus of Tricholomataceae in the order Agaricales, are described and illustrated from eastern North America. All four are relatively rare or geographically restricted but two have a broad geographical distribution occurring in southeast Canada and in the southern Appalachians. This study increases the number of known species in the genus from three to seven, five of which occur in eastern North America. A broad concept for the genus is discussed. Illustrations and descriptions of the North American taxa are presented, along with a taxonomic key to the known seven species in the genus worldwide. 
    more » « less